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Active Optomechanical Media for Nonlinear

Microwave Processes
D. l?ogovin and T. P. Shen

Abstract–Theory asserts that three-dimensional arrays of
electrically small particles are excellent media for wave-mixing
processes at microwave and millimeter wavelengths. As a spe-
cific example, spheres that are free to move on a stack of flat,
transparent surfaces and that interact with incident radiation are
examined. Electrostrictive forces move the spheres in such a way
as to form density index gratings that can be used for control-
ling the propagation characteristics of coherent radiation. Phase

conjugation in thk med]um is also examined.

I N this letter, we examine the optical and dynamical proper-

ties of three-dimensional arrays of electrically small parti-

cles that are free to move under the action of electromagnetic
forces. We refer to such materials as active optomechanical

media and show that they are eminently suitable for such

wave-mixing processes as phase conjugation [1] at mi-

crowave and millimeter wavelengths. The four wave-mixing

coefficients and optical response times for generating phase

conjugate radiation are determined for an optomechanical

medium composed of a three-dimensional array of spheres

that are free to roll on flat, transparent planes to form density

index gratings.

Optomechanical media constitute a special class of artifi-

cial Kerr media [2] whose properties appear to differ substan-

tially from those of microparticle suspensions [3], [4]. The-

ory asserts that optomechanical media have much faster

response times and larger nonlinear wave-mixing coefficients

than those of comparable microparticle suspensions. How-

ever, optomechanical media can be understood as the limit-

ing case of a microparticle suspension operating in the fully

saturated regime.

For simpicity, we consider a three-dimensional array of

identical spheres of radius r., free to roll on a stack of flat,

transparent planes and irradiated by three coherent beams

whose wavelengths are much greater than r.. The volume

fraction of spheres is y = 4 mrjnO /3, no is the sphere

density and the sphere’s polarizability is u. Let Z3(r, t) be

the electric field of the incident radiation fields

E(r, t) = ~ e~E~exp[i(Kn . r - Omt)] + cc
m=l,2, p,pc

(1)

where em, Em, Km and urn are the unit polarization vector,
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complex amplitude, propagation vector and frequency of the ‘

rnth beam. Here, m = 1 (2) corresponds to the pump beam

propagating to the right (left), m = p refers to the probe

wave and m = PC corresponds to the wave that is phase

conjugate to the probe. For standard phase conjugation,

K1 = – K2 = K; Kp = – Kpc = Q and all of the frequen-

cies are degenerate, i.e., u~ = u.

In the presence of radiation, each sphere acquires an

induced electric dipole moment p(r, t) = a E(Y, t) that, in

turn, couples to the incident radiation via an electrostrictive

coupling U(r, f) = – ~a(E2(r, t)). Here, the angular

brackets imply a time average that is long compared to the

optical period, but short compared to the medium response

time. The total polarization vector P(r, t) = ap(r, t)E(r,

t), where p(r, t) is the number density of spheres.

Suppose all of the beams are linearly polarized, with the

pump waves orthogonally polarized with respect to one an-

other and the probe beam polarized parallel to the m = 1

pump wave. Then U(r) = – &YEpE1 COS[(K – Q) . r],

which gives rise to an electrostrictive force F(r, t) =

– VU(r, t) that moves the spheres to the points on the

planes, denoted by ( Xj, Yl) where U(r, t) is minimum. The
z points are set by the plane positions, Zp, and the equilib-

rium sphere density can be approximated as

(2)

where IV is the total number of spheres.

The phase conjugate wave is produced via diffraction of

the m = 2 pump beam by the first-order index grating:

COS[(K – Q) “ r]. Thus, we spectrally decompose p(r, t)

into grating components

p(r, t) = ~~OAkcos[k(K– Q) o r]. (3)

For simplicity, all of the propagation vectors are assumed

to lie in the xy plane and the x axis is defined by the grating

wave vector K – Q. Once steady-state is established, the

spheres will be located at the points XJ = j~ /K ICOS(T/2) 1,

j=O, *1, *2, ”.. with -y the angle between K and Q.

The depth of the different translational gratings is set by

A ~ = no(l +- c$~o) which is independent of beam power.

This statement is valid provided the electrostrictive energy

per sphere is large compared to ~k~ T, the thermal energy

per sphere. Accordingly, unless the incident beam intensities

are very low the medium is saturated.
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The polarization vector that gives rise to phase conjuga-

tion, l&(r, t) = nOaE2e2 exp[i(Q o r + cot)] + cc. To de-

termine the phase conjugate reflectively, we insert PPC(r, t)

into the Maxwell equations, make the slowly varying enve-

lope approximation (SVEA) and solve for the conjugate

wave. In the nondepleted pump approximation, the intensity

of the exiting conjugate wave, lPC = 12[ K L]2, where K L =

2 ~KLanO with 12 the intensity of the m = 2 pump beam.

For metallic particles, a = r;, K L = 6 T fL /h and the

four-wave mixing coefficient is independent of pump power

as one would expect for a nonlinear medium operating in the

saturation regime.

In addition to generating the phase conjugate beam, the

medium will also amplify the initial probe wave as it propa-

gates through the optical index grating created by the EPC

and the m = 1 pump beam. The depth of this grating is

sufficiently deep throughout the bulk of the nonlinear medium

such that the polarization vector that gives rise to probe beam

amplification can be approximated as PP( r, t) = n ~a El e ~

exp[ i( Q or – at)] + cc. The intensity of the exiting probe

beam is lP(L) = lP(0) + 2K LIIIIp(0)]l/2 + [K L]211.

If the volume fraction of spheres is 5 x 10-4 and L/h=

30, then K L = 0.28. If the beam intensities are 11 = 12 = 1

W/cm2 and 1P = 1 pW/cm2, then the phase conjugate beam

intensity will be 8% of the pump beam or 80 mW/cm2. The

intensity of the exiting probe beam will be 80.5 mW/cm2. In

general, we require L/A= 30, and volume fractions on the

order of 5 x 10 – 4 are required. For 100 pm sized spheres,

this implies a sphere density of 125 particles /cm3. For 30

GHz radiation the required system size is on the order of 30
cm; implying IV = 3.4 x 106. For 94 GHz radiation, the

required device size is on the order of three centimeters,

which implies IV = 1.25 x 105.

These results can also be extracted from a statistical me-

chanical analysis using the Maxwell -Boltzmann distribution

for the sphere density and taking the limit U/ kBT ~ m

[1U(r, t)
exp –

k~T
P(r3 t) = no Zo(g)

( m ~,k(g). nol+2~—

)

cos[k(~ – Q) “ r] . (4)
/c=l l)(g)

Here, ~k( z) is the kth-order modified Bessel function of

argument z, g = 4 T CY(11IP)l /2 / ck~T, where 11 and 1P are

the intensities of the m = 1 pump and probe beams. In the

limit g ~ m, ~k( g)/~O( g) ~ 1, in agreement with A k in
(3). For 100-pm metallic spheres at room temperatures,

g = 105(111P)lj2, and for 1, = 1 W/cm2 and Ip = 10

nW/cm2, g = 10 and a mechanical description is adequate.

For smaller spheres, say on the order of 10 ~m, the intensity

of the probe beam would have to be increased to 10 mW/cm2

for the present mechanical description to be valid.

Next, we determine the medium response time. If the

spheres were immersed in a viscous fluid, their dynamics

would be described by the Planck- Nernst equation. How-

ever, as they are sited in air, the Planck– Nernst equation is

inappropriate and their motion is determined by classical

mechanics. In particular, the correct description is that of a

rolling sphere in contact with a flat surface and subject to an

electrostrictive force, a reaction force and friction from the

flat surface and air. The equation of motion for a given

sphere are

dV 5

-(

v
VU(r, t) + pRmg~

Z=–lm )

–~ qav+ r(t), (5)

where m is the sphere’s mass, ~~ the coefficient of rolling

friction, q the dynamical viscosity of air (1.8 x 10-4P), V

the sphere velocity and r(t) is the fluctuating Langevin force

that is associated with the dissipation due to air friction. The

first term on the rhs of (5) arises from the electrostrictive

force, the second is due to rolling friction, while the third

term is a consequence of air friction. Typically, ~~ is

negligible, i.e., ~~ = 0.1%.

The acceleration that a Copper sphere experiences is inde-

pendent of its size and for one Watt beams is 0.18 cm/s2,

i.e., = 180 pgravities. The total force on a 100 pm sized

Copper (pn = 8.96 g/cm3) sphere is on the order of 6.76

pdynes. The equation of motion for an individual micro-

sphere rolling on a perfectly flat plane ( ~~ = O) under the

action of the forces previously discussed is

Here, U. - (2m/A)(15[ 1P11]’/2/7p~c)112, (3 =
39~/14Pnr~, & = (K – Q) . r, the grating spacing A =

lK-Ql/27r, p,~ is the sphere’s mass density and iV( t ) =

(K - Q) “ I’(t). In particular (N(t)) = O and (N(t) N(t9)

= 2 kTB8(t – t’)/ m. For situations of interest to us, the

motion is dominated by the electrostrictive force and dissipa-

tion arising from friction with the air.

Examination of (6) reveals two regimes of interest: 1) an

oscillatory regime and 2) an overdamped regime. The partic-

ular regime the medium is in depends on the relative sizes of

@o and ~. In the oscillatory regime, where O. > ~, the time

it takes for the medium to achieve steady-state ( ~~) is 6-1,

while co. is the resonant frequency. Note that in the absence

of dissipation, i.e., p = O, the sphere’s never achieve
steady-state and if they were initially randomly positioned, a

coherent density grating will never form.

In the heavily overdamped regime where @o<8, ~~ 1 =

~~ /2(3 = (2 m/A)2[5CYEl EP /104 ~qro]. In this regime, (7)

can be solved analytically

sin[t (t)] = sin[& (0)]

(1 - cos[&(0)])e-t/’~
. (7)

sin2[ $(0)] + [(1 – cos[~(0)])e-tj’~]2

An examination of (7) shows that the particle rolls from its

initial position &(0) into its equilibrium position on a time

scale set by 7~. Note that the inverse response time in (7) can

be written as 1/ r~ = D’(2 T /A)2(U/kBT), with D’ =

5 k~ T/ 104 mqro the translational diffusion coefficient for a
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sphere moving in a medium with a viscosity q. This should

be contrasted with a suspension in the strong field regime,

where the medium response time [5], [6] ~~ 1 =

DK2(U/ kB T), with D = 6 ~k~T/ rOq being the transla-

tional diffusion coefficient for a sphere in a viscous fluid. At

94 GHz, with 2 W/cm2 rms beam intensities and 100 pm

Copper spheres, r~ = 4.5s. For 18 GHz radiation and the

same beam powers, the medium response time will be on the

order of 120s. The optical response time for the formation of

a translational grating in a carbon fiber microparticle suspen-

sion [1] at these wavelengths and particle sizes is on the order

of several hours to a few days. Finally, the medium response

time scales inversely with air pressure through the dynamic

viscosity of the air. If the phase conjugator is enclosed and

the air pressure is reduced to 10 torr; the grating formation

times will be reduced by a factor of 0.0132 to 0.06s and 1.6s,

respectively.

To summarize, we have examined the nonlinear optical

and dynamical characteristics of a new class of materials that

can be utilized as the active media for such wave mixing

processes as phase conjugation at microwave and millimeter

wavelengths. The specific materials considered are composed

of three-dimensional arrays of spheres that are free to roll on

transparent, flat planes. Grating formation times are typically

on the order of a second and in the saturated regime the

emitted phase conjugate power is on the order of a few

percent of the pump power. Future studies will focus on

using anisotropic media and will consider other nonlinear

processes.
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