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Active Optomechanical Media for Nonlinear
Microwave Processes

D. Rogovin and T. P. Shen

Abstract—Theory asserts that three-dimensional arrays of
electrically small particles are excellent media for wave-mixing
processes at microwave and millimeter wavelengths. As a spe-
cific example, spheres that are free to move on a stack of flat,
transparent surfaces and that interact with incident radiation are
examined. Electrostrictive forces move the spheres in such a way
as to form density index gratings that can be used for control-
ling the propagation characteristics of coherent radiation. Phase
conjugation in this medium is also examined.

N this letter, we examine the optical and dynamical proper-

ties of three-dimensional arrays of electrically small parti-
cles that are free to move under the action of electromagnetic
forces. We refer to such materials as active optomechanical
media and show that they are eminently suitable for such
wave-mixing processes as phase conjugation [1] at mi-
crowave and millimeter wavelengths. The four wave-mixing
coefficients and optical response times for generating phase
conjugate radiation are determined for an optomechanical
medium composed of a three-dimensional array of spheres
that are free to roll on flat, transparent planes to form density
index gratings.

Optomechanical media constitute a special class of artifi-
cial Kerr media [2] whose properties appear to differ substan-
tially from those of microparticle suspensions [3], [4]. The-
ory asserts that optomechanical media have much faster
response times and larger nonlinear wave-mixing coeflicients
than those of comparable microparticle suspensions. How-
ever, optomechanical media can be understood as the limit-
ing case of a microparticle suspension operating in the fully
saturated regime.

For simpicity, we consider a three-dimensional array of
identical spheres of radius r,, free to roll on a stack of flat,
transparent planes and irradiated by three coherent beams
whose wavelengths are much greater than r,. The volume
fraction of spheres is f=4wrin, /3, n, is the sphere
density and the sphere’s polarizability is «. Let E(r, t) be
the electric field of the incident radiation fields

E(r,t) = b

mEmexp|i(K,, - r— w,t)] + cc
m=12.p,pc

(1)

where ¢, E,,, K,, and w,, are the unit polarization vector,
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complex amplitude, propagation vector and frequency of the
mth beam. Here, m = 1 (2) corresponds to the pump beam
propagating to the right (left), m = p refers to the probe
wave and m = pc corresponds to the wave that is phase
conjugate to the probe. For standard phase conjugation,
K, =-K,=K; K,=~K, = Q and all of the frequen-
cies are degenerate, i.e., w,, = w.

In the presence of radiation, each sphere acquires an
induced electric dipole moment p(r, t) = aE(r, t) that, in
turn, couples to the incident radiation via an electrostrictive
coupling U(r, t) = — a(E*(r, t)). Here, the angular
brackets imply a time average that is long compared to the
optical period, but short compared to the medium response
time. The total polarization vector P(r, t) = ap(r, t)E(r,
t), where p(r, t) is the number density of spheres.

Suppose all of the beams are linearly polarized, with the
pump waves orthogonally polarized with respect to one an-
other and the probe beam polarized parallel to the m = 1
pump wave. Then U(r) = — ;aE,E, cos[(K — Q) - r],
which gives rise to an electrostrictive force F(r, t) =
—VU(r, ¢t) that moves the spheres to the points on the
planes, denoted by (x;, y,) where U(r, ¢) is minimum. The
z points are set by the plane positions, z,,, and the equilib-
rium sphere density can be approximated as

p(r,t) =N Ej: Zl Xp) 8(x ~x;)8(y - y,)8(z - 2,),
()

where N is the total number of spheres.

The phase conjugate wave is produced via diffraction of
the m =2 pump beam by the first-order index grating:
cos[(K — Q) - r]. Thus, we spectrally decompose o(r, t)
into grating components

o(r,t) = kZo Ay cos[ k(K - Q) -r]. (3)

For simplicity, all of the propagation vectors are assumed
to lie in the xy plane and the x axis is defined by the grating
wave vector K — Q. Once steady-state is established, the
spheres will be located at the points x, = jx /K |cos(y/2)],
Jj=0, £1, £2, -+ with y the angle between K and Q.
The depth of the different translational gratings is set by
A, = ny(l + §,,) which is independent of beam power.
This statement is valid provided the electrostrictive energy
per sphere is large compared to 2k,7, the thermal energy
per sphere. Accordingly, unless the incident beam intensities
are very low the medium is saturated.
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The polarization vector that gives rise to phase conjuga-
tion, P, (r, t) = nyaE,e, expli(Q * r + wt)] + cc. To de-
termine the phase conjugate reflectively, we insert P, (7, ?)
into the Maxwell equations, make the slowly varying enve-
lope approximation (SVEA) and solve for the conjugate
wave. In the nondepleted pump approximation, the intensity
of the exiting conjugate wave, I,. = L[k L]*, where kL =
27w KLan, with I, the intensity of the m = 2 pump beam.
For metallic particles, o =r3, «L = 67 fL/\ and the
four-wave mixing coeflicient is independent of pump power
as one would expect for a nonlinear medium operating in the
saturation regime.

In addition to generating the phase conjugate beam, the
medium will also amplify the initial probe wave as it propa-
gates through the optical index grating created by the E
and the m = 1 pump beam. The depth of this grating is
sufficiently deep throughout the bulk of the nonlinear medium
such that the polarization vector that gives rise to probe beam
amplification can be approximated as/Pp(r, 1) = nyake,
expli(Q - r — wt)] + cc. The intensity of the exiting probe
beam is I,(L) = I,(0) + 2« L[ 1,1, (0)]1/2 + [KL]ZI

If the volume fractlon of spheres is5 x107*and L/N =
30, then « L = 0.28. If the beam intensities are [, = I, = 1
W/cm? and I, = 1 pW /em?, then the phase conjugate beam
intensity will be 8% of the pump beam or 80 mW /cm?. The
intensity of the exiting probe beam will be 80.5 mW /cm?. In
general, we require L /A = 30, and volume fractions on the
order of 5 x 10™* are required. For 100 um sized spheres,
this implies a sphere density of 125 particles/cm>. For 30
GHz radiation the required system size is on the order of 30
cm; implying N = 3.4 X 105. For 94 GHz radiation, the
required device size is on the order of three centimeters,
which implies N = 1.25 x 10°.

These results can also be extracted from a statistical me-
chanical analysis using the Maxwell-Boltzmann distribution
for the sphere density and taking the limit U/ kzT — o

U(r, t)
exp| ~ —
B

I(g)

—n0(1+22;: oE ;cos[k(K—Q)~r]). (4)

Here, I,(z) is the kth-order modified Bessel function of
argument z, g = 4mwa(l;1,)"/*/ck T, where I, and I, are
the intensities of the m = 1 pump and probe beams. In the
limit g — oo, I,(g)/I,(g) — 1, in agreement with A4, in
(3). For 100-um metallic spheres at room temperatures,
g~ 105(LI)"2, and for I, =1 W/cm® and I, =10
nW/cm?, g = 10 and a mechanical description is adequate.
For smaller spheres, say on the order of 10 pm, the intensity
of the probe beam would have to be increased to 10 mW / em?
for the present mechanical description to be valid.

Next, we determine the medium response time. If the
spheres were immersed in a viscous fluid, their dynamics
would be described by the Planck-Nernst equation. How-
ever, as they are sited in air, the Planck-Nernst equation is

p(r, 1) = ng
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inappropriate and their motion is determined by classical
mechanics. In particular, the correct description is that of a
rolling sphere in contact with a flat surface and subject to an
electrostrictive force, a reaction force and friction from the
flat surface and air. The equation of motion for a given
sphere are

dv 5 (vvir.

da  Tm (r. 2) + wrme;
52x
_2ET L av +1(d). (5
2Ty (), ()

where m is the sphere’s mass, ujp the coefficient of rolling
friction, % the dynamical viscosity of air (1.8 x 10™*p), ¥
the sphere velocity and I'(¢) is the fluctuating Langevin force
that is associated with the dissipation due to air friction. The
first term on the rhs of (5) arises from the electrostrictive
force, the second is due to rolling friction, while the third
term is a consequence of air friction. Typically, up is
negligible, i.e., up = 0.1%.

The acceleration that a Copper sphere experiences is inde-
pendent of its size and for one Watt beams is 0.18 cm/s?,
i.e., = 180 pgravities. The total force on a 100 pm sized
Copper (p,, = 8.96 g/cm’) sphere is on the order of 6.76
pdynes. The equation of motion for an individual micro-
sphere rolling on a perfectly flat plane (ugz = 0) under the
action of the forces previously discussed is

£+ 28+ wising = N(¢)

Here, w, = Q7 /MNU5[1,1)1'*/7p,0)'*, B =
399/14p,r2, & = (K ~ Q) - r, the grating spacing A =
| K- Q| /27, p,, is the sphere’s mass density and N(¢) =
(K — Q) - T'(¢). In particular (N(#)) = 0 and (N(£)N(t)
= 2kTB8(t — t')/m. For situations of interest to us, the
motion is dominated by the electrostrictive force and dissipa-
tion arising from friction with the air. )

Examination of (6) reveals two regimes of interest: 1) an
oscillatory regime and 2) an overdamped regime. The partic-
ular regime the medium is in depends on the relative sizes of
w, and 3. In the oscillatory regime, where w, > 3, the time
it takes for the medium to achieve steady-state (1) is 57!,
while «, is the resonant frequency. Note that in the absence
of dissipation, i.e., B =0, the sphere’s never achieve
steady-state and if they were initially randomly positioned, a
coherent density grating will never form.

In the heavily overdamped regime where w, < 8, 7' =
w§ /28 = @ /A [SaE E, /1047qry]. In this regime, (7)
can be solved analytically

sin[ £(#)] = sin[£(0)]
_ (1 - cos[£(0)])e
sin?[ £(0)] + [(1 — cos[£(0)])e~*/7%]
An examination of (7) shows that the particle rolls from its
initial position £(0) into its equilibrium position on a time
scale set by 75. Note that the inverse response time in (7) can

be written as 1/7, = D'Q7w /A)*(U/kyT), with D’ =
5kpT /104 wqyr, the translational diffusion coefficient for a

(6)

—t/Tg

(7)
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sphere moving in a medium with a viscosity #. This should
be contrasted with a suspension in the strong field regime,
where the medium response time [5], [6] 75’ =

DK*(U/kyT), with D = 6wkyT /ron being the transla-
tional diffusion coefficient for a sphere in a viscous fluid. At
94 GHz, with 2 W/cm” rms beam intensities and 100 pm
Copper spheres, 7, = 4.5s. For 18 GHz radiation and the
same beam powers, the medium response time will be on the
order of 120s. The optical response time for the formation of
a translational grating in a carbon fiber microparticle suspen-
sion [1] at these wavelengths and particle sizes is on the order
of several hours to a few days. Finally, the medium response
time scales inversely with air pressure through the dynamic
viscosity of the air. If the phase conjugator is enclosed and
the air pressure is reduced to 10 torr; the grating formation
times will be reduced by a factor of 0.0132 to 0.06s and 1.6s,
respectively.

To summarize, we have examined the nonlinear optical
and dynamical characteristics of a new class of materials that
can be utilized as the active media for such wave mixing
processes as phase conjugation at microwave and millimeter
wavelengths. The specific materials considered are composed
of three-dimensional arrays of spheres that are free to roll on
transparent, flat planes. Grating formation times are typically

on the order of a second and in the saturated regime the
emitted phase conjugate power is on the order of a few
percent of the pump power. Future studies will focus on
using anisotropic media and will consider other nonlinear
processes.
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